AwardsFreedom CheteniSchool Administrators ResearchThe Superintendents Journal

MRI: Acquisition of Focused Ion Beam-Scanning Electron Microscope for the Multidisciplinary Research and Education at the University of Louisiana at Lafayette: University of Louisiana at Lafayette

Xiao-Dong Zhou

[email protected]

The principal aim of this project is to facilitate multidisciplinary research for three-dimensional reconstructions of highly complex microscopic samples that have not yet been achieved but are crucial for the interpretation of topology and geometry of surface and shape attributes of various types of specimens relating to energy materials, petroleum, geology, and biological systems. The project will significantly transform the study of the nano/microstructure and chemical composition of a wide variety of inorganic and organic compounds and provide scientific insights that would otherwise be unattainable, and will be integrated with other analytical tools. The project will also encompass significant educational and outreach activities, including collaboration with local schools and Science Museum, multi-year undergraduate and graduate research programs, advanced technical training and inclusive workforce development for future electron microscopists. <br/><br/>Goals of this project are to (i) investigate the role of interface structures on the durability of high-performance fuel cell electrodes, (ii) enable an understanding of materials for solid-state batteries, (iii) unravel the unexpected catalytic activity in mesoporous oxides, (iv) explore the role of nano/microstructures on the properties of magnetic materials, (v) conduct research on geomaterials, self-healing concrete, and cosmic dust, (vi) characterize complex micro-fracture propagation in heterogeneous unconventional resources, (vii) understanding the mechanisms of self-healing concrete under harsh environmental conditions, (viii) improve the design of absorbents for the treatment of hydraulic fracturing flowback water, (ix) analyze presolar grains to identify astrophysical conditions, (x) conduct biodiversity, developmental, morphological, cytological and biomineralization research in vastly varying fields pertaining to microstructures of calcified coralline algae, fern spores, and plant organs, (xi) understand functional roles of fibroblast growth factor receptors signaling on astrocyte development, and (xii) resolve microstructures in photosynthesis proteins, and in extracellular matrix of tumor cells.<br/><br/>This project is jointly funded by CBET-MRI Program and the Established Program to Stimulate Competitive Research (EPSCoR).<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

About Exponent

Exponent is a modern business theme, that lets you build stunning high performance websites using a fully visual interface. Start with any of the demos below or build one on your own.

Get Started

Leave a Reply

Your email address will not be published. Required fields are marked *

Privacy Settings
We use cookies to enhance your experience while using our website. If you are using our Services via a browser you can restrict, block or remove cookies through your web browser settings. We also use content and scripts from third parties that may use tracking technologies. You can selectively provide your consent below to allow such third party embeds. For complete information about the cookies we use, data we collect and how we process them, please check our Privacy Policy
Youtube
Consent to display content from Youtube
Vimeo
Consent to display content from Vimeo
Google Maps
Consent to display content from Google
Spotify
Consent to display content from Spotify
Sound Cloud
Consent to display content from Sound