NSFOpen Education ResourcesThe Research University (TRU)

IIBR Informatics: Advancing Bioinformatics Methods using Ensembles of Profile Hidden Markov Models: University of Illinois at Urbana-Champaign

Tandy Warnow

[email protected]

Many steps in biological research pipelines involve the use of machine learning models, and these have become standard tools for many basic problems. Elaborations on basic machine learning models ("ensembles" of machine learning models) can provide improvements in accuracy compared to standard usage, for various biological questions. However, the design of these ensembles has been fairly ad hoc, and their use can be computationally intensive, which reduces their appeal in practice. This project will advance this technology by developing statistically rigorous techniques for building ensembles of machine learning models, with the goal of improving accuracy. The project will also develop methods that use these ensembles for new biological problems, including protein structure and function prediction. Broader impacts include software school, engagement with under-represented groups, and open-source software.<br/> <br/>Profile Hidden Markov Models (i.e., profile HMMs) are probabilistic graphical models that are in wide use in bioinformatics. Research over the last decade has shown that ensembles of profile HMMs (e-HMMs) can provide greater accuracy than a single profile HMM for many applications in bioinformatics, including phylogenetic placement, multiple sequence alignment, and taxonomic identification of metagenomic reads. This project will advance the use of e-HMMs by developing statistically rigorous techniques for building e-HMMs with the goal of improving accuracy and improving understanding of e-HMMs, and will also develop methods that use e-HMMs for protein structure and function prediction. Broader impacts include software schools, engagement with under-represented groups, and open-source software. Project software and papers are available at http://tandy.cs.illinois.edu/eHMMproject.html.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

About Exponent

Exponent is a modern business theme, that lets you build stunning high performance websites using a fully visual interface. Start with any of the demos below or build one on your own.

Get Started

Leave a Reply

Your email address will not be published. Required fields are marked *

Privacy Settings
We use cookies to enhance your experience while using our website. If you are using our Services via a browser you can restrict, block or remove cookies through your web browser settings. We also use content and scripts from third parties that may use tracking technologies. You can selectively provide your consent below to allow such third party embeds. For complete information about the cookies we use, data we collect and how we process them, please check our Privacy Policy
Youtube
Consent to display content from Youtube
Vimeo
Consent to display content from Vimeo
Google Maps
Consent to display content from Google
Spotify
Consent to display content from Spotify
Sound Cloud
Consent to display content from Sound